Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiao-Hang Qiu* and Hong-Yan Wu

Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: qiuxh@nankai.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.052 wR factor = 0.158 Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

[2,2'-(Ethylenedioxy)dibenzaldehyde bis(thiosemicarbazone)]nickel(II) diperchlorate methanol disolvate

The title compound, $[Ni(C_{18}H_{18}N_6O_2S_2)](CIO_4)_2\cdot 2CH_4O$, (I), has been prepared by the reaction of 2,2'-(ethylenedioxy)dibenzaldehyde bis(thiosemicarbazone), *L*, with nickel(II) perchlorate. The chemical structural unit, which is twice the asymmetric unit of (I), consists of one Ni^{II} ion, one ligand *L*, two methanol solvent molecules and two uncoordinated perchlorate anions. The Ni atom lies on a crystallographic twofold axis of rotation. The ligand *L* coordinates to the central Ni atom through two O atoms, two S atoms and two N atoms, giving a distorted octahedral environment. The S and O atoms occupy equatorial positions, and are nearly coplanar with the nickel, while the two N atoms occupy axial positions, with the N-Ni-N angle being 177.06 (18)°.

Comment

Schiff bases and their metal complexes are of importance as a result of their antibacterial activity and antitumor properties (Yang *et al.*, 2000). Therefore, the synthesis of new Schiff bases and their metal complexes has become popular. In this study, we have prepared a new nickel(II) Schiff base complex, (I), from nickel(II) perchlorate and the hexadentate ligand 2,2'-(ethylenedioxy)dibenzaldehyde bis(thiosemicarbazone), and determined its crystal structure.

The molecular structure of (I) is shown in Fig. 1. The cation is disposed about a crystallographic twofold axis of symmetry. The structure adopts a distorted octahedral geometry about the Ni atom in which equatorial positions are occupied by two S atoms [S1 and S1ⁱ; symmetry code: (i) 1 - x, $\frac{1}{2} - y$, z] and two O atoms (O1 and O1ⁱ). The axial positions are occupied by two of the semicarbazone N atoms (N1 and N1ⁱ). The Ni-N1, Ni-O1 and Ni-S1 bond distances of 2.034 (3), 2.156 (3) and 2.348 (2) Å, respectively, are similar to those reported for other Schiff base complexes (Dipesh *et al.*, 2003). The *trans* bond angles deviate slightly from the expected value of 180°. The Ni atom lies 3 Å out of the mean plane of the equatorial donors. Received 24 June 2004 Accepted 14 July 2004 Online 24 July 2004

Experimental

The title compound was prepared by adding a methanol solution (5 ml) of nickel perchlorate (0.1 mmol) to an ethanol solution (10 ml) of L (Lu, 2003) (0.1 mmol) neutralized by triethylamine. The mixture was refluxed for about 2 h and then cooled to room temperature and filtered. The filtrate was slowly evaporated at room temperature to yield green block crystals of (I) suitable for X-ray analysis. Analysis calculated for C₂₀H₂₆Cl₂N₆NiO₁₂S₂: C 32.60, H 3.53, N 11.41%; found: C 32.43, H 3.46, N 11.32%.

Crystal data

$[Ni(C_{18}H_{18}N_6O_2S_2)](ClO_4)_2 \cdot 2CH_4O$	Mo $K\alpha$ radiation
$M_r = 736.20$	Cell parameters from 934
Tetragonal, $I4_1/a$	reflections
a = 13.586 (8) Å	$\theta = 2.5 - 25.5^{\circ}$
c = 32.60 (4) Å	$\mu = 1.03 \text{ mm}^{-1}$
$V = 6018 (9) \text{ Å}^3$	T = 293 (2) K
Z = 8	Block, green
$D_x = 1.625 \text{ Mg m}^{-3}$	$0.20 \times 0.18 \times 0.14 \; \mathrm{mm}$
Data collection	

Data collection

Bruker SMART CCD area-detector	-detector 3097 independent reflections	
diffractometer	2286 reflections with $I > 2\sigma(I)$	
φ and ω scans	$R_{\rm int} = 0.054$	
Absorption correction: multi-scan	$\theta_{\rm max} = 26.5^{\circ}$	
(SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 16$	
$T_{\min} = 0.651, \ T_{\max} = 0.866$	$k = -16 \rightarrow 17$	
17255 measured reflections	$l = -40 \rightarrow 35$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0804P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.052$	+ 15.2797P]
$wR(F^2) = 0.158$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} < 0.002$
3097 reflections	$\Delta \rho_{\rm max} = 0.70 \ {\rm e} \ {\rm \AA}^{-3}$
197 parameters	$\Delta \rho_{\rm min} = -0.81 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Ni1-N1	2.034 (3)	Ni1-S1	2.3476 (18)
Ni1-01	2.156 (3)		
N1 ⁱ -Ni1-N1	177.06 (18)	S1 ⁱ -Ni1-S1	101.98 (10)
N1 ⁱ -Ni1-O1	94.02 (12)	C9-S1-Ni1	95.83 (14)
N1-Ni1-O1	83.64 (12)	C2-O1-Ni1	123.1 (3)
N1-Ni1-S1 ⁱ	97.62 (10)	C1-O1-Ni1	114.4 (2)
N1-Ni1-S1	84.24 (10)	C8-N1-Ni1	127.7 (3)
O1-Ni1-S1	162.01 (8)	N2-N1-Ni1	116.5 (2)
O1 ⁱ -Ni1-S1	92.77 (11)		

Symmetry code: (i) $1 - x, \frac{1}{2} - y, z$.

H atoms were included in calculated positions and refined as riding on their parent atoms, with C-H distances in the range 0.93-0.98 Å and N-H distances in the range 0.86–0.90 Å, and with $U_{iso}(H) =$ $1.2U_{eq}(C,N).$

Data collection: SMART-NT (Bruker, 1998); cell refinement: SMART-NT; data reduction: SAINT-NT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Bruker, 1998); software used to prepare material for publication: SHELXTL-NT.

Figure 1

A view of the cation of the title compound, shown with 30% probability displacement ellipsoids. H atoms have been omitted. The suffix A corresponds to symmetry code (i) in Table 1.

The packing of the title compound. H atoms, perchlorate ions and MeOH molecules have been omitted.

This work was supported by the Innovation Foundation of Nankai University.

References

Bruker (1998). SMART-NT, SAINT-NT and SHELXTL-NT. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

- Dipesh, G., Suman, M., Satyabrata, S., Ki-Young, C., Akira, E. & Muktimoy, C. (2003). Inorg. Chem. 42, 7189-7199.
- Lu, S. R. (2003). Chin. J. Synth. Chem. 4, 349-353.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Yang, Z. Y., Yang, R. D., Li, F. S. & Yu, K. B. (2000). Polyhedron, 19, 2599-3604.